

OTM - An Advanced Oxygen Technology for IGCC

Ravi Prasad, Jack Chen, Bart van Hassel, John Sirman, James White, Eric Shreiber, Joe Corpus, Joshua Harnanto

San Francisco, Oct 30, 2002

Gasification Technologies 2002

Use of Oxygen in IGCC

Oxygen is the preferred oxidant

- ⇒ Reduced costs for gasifier, heat recovery, acid gas removal
- ⇒ Enhanced potential for CO₂ sequestration
- ⇒ But added cost for ASU

O2 supply options:

- ⇒ Cryogenic: Most mature & commercial
- ⇒ PSA: Small-medium sizes
- ⇒ Polymeric Membranes: Small, low purity
- ⇒ OTM: Emerging breakthrough technology

Why OTM?

High operating temperature enables efficient integration with IGCC

OTM = Oxygen Transport Membrane

Mixed Conductor Transport Mechanism

- Oxides of MetalsOxygen Ion & Electron
- **Transport**
- Produces Pure O2
- High T Operation
- (500-1000°C)
- Pressure Driven Oxygen
- Separation

Praxair's Integrated OTM Approach

Over 25 Development Partners

OTM Integration in IGCC Basis for Assessment

- Illinois #6 coal as feedstock
- Westinghouse 501G gas turbine
 - ⇒ Anchor point for all calculations : ~272 MW power output from GT
- Shell technology used for gasification
- O₂ production:
 - ⇒ Advanced Cryo: Advanced cryo tailored for IGCC
 - ⇒ OTM integrated with GT
 - ⇒ OTM+SOFC Integrated with GT
 - ⇒ OTM with steam integration

IGCC with OTM and SOFC

Cost and Efficiency of Power Generation via IGCC

Project Plan

Joint DOE/Praxair program objective:

- ⇒ Commercialize OTM membranes for IGCC Applications
- Phase1: 1999 2002
 - ⇒ Material development
 - ⇒ Composite OTM development
 - ⇒ Proof of concept in multi-element pilot reactor
- Phase2: 2002 2004
 - ⇒ Manufacturing of full size elements
 - ⇒ Development of specialized components
 - ⇒ Engineering validation in larger pilot reactor
- Phase3: 2004 2007
 - ⇒ Pre-commercial demonstration

OTM Materials Options

Fluorite, AO₂

Pyrochlores, A₂B₂O₇

Perovskites, ABO₃

Brownmillerite A₂B₂O₅

Dual Phase

Evolution of Advanced OTM Materials

•Simultaneous improvement of flux & strength is a significant accomplishment

Components of Praxair's High Performance Composite OTM

Ultra low leak rates achieved in a single firing step

PSC: Commercial Technology for OTM Powder Production

Advanced Process

Calcination

- → Micro-scale stoichiometry control
- → Well suited for complex, multi-cation chemistries
- → Highly flexible Over 400 mixed oxide compositions made

Element Fabrication

- Praxair has access to fabrication technology from
 - ⇒ Amoco
 - ⇒ BP
 - ⇒ Statoil
 - ⇒ Westinghouse
- Praxair & its partners have fabricated and tested a wide range of element geometries
 - ⇒ Plates, monoliths, tubes....
- Final selection is based on many considerations

Assessment of Element Geometry

Attribute	Tubular	Planar	Monolith
Sealing	Best	Difficult	Very Difficult
Manifolding	Easier	Difficult	Very Difiicult
Strength	Self Supporting	Not self supporting	Could be self supporting
Fabrication	Existing Technology Multiple Options Most advanced for large size	Existing technology for small size Difficult for large size	Very Difficult for any size
Scaleup	Easy	Difficult	Very Difficult
Mnf Yield on Functional Element	High	Low for complex geometry	Low
Area/Volume Ratio	Medium	High	Very High
Thermal Management	Easy	Fair	Difficult
Replacement	Single tube	Entire stack	Entire Monolith

Tubular Variants: Preferred configuration

Praxair Technology for Large OTM Elements

Unique semi works manufacturing facility operational

Seal Technology Development at Praxair

Copyright © 2002 Praxair Technology, Inc. All rights reserved.

Multi-Element Pilot Reactor

- 0.2 TPD capacity
- •Pilot plant producing high purity O2 using composite tubes
- •Target Flux demonstrated
- •Life test in progress

Advances in OTM Technology at Praxair

- 120% of target flux achieved @
 150C lower temperature
 - ⇒ 6x flux improvement
- Oxygen purity > 99.5%
- Successful 1000+ hr life test @ 275psi & 900C
 - ⇒ Thin Film Membrane
 - ⇒ Stable flux performance
 - ⇒ No membrane degradation
- 10 thermal cycles (25-900C at 275 psi) achieved with no degradation

Summary

- Ceramic membranes offer potential for low cost oxygen
 - ⇒ Lowest capital cost, power consumption, and oxygen cost
 - ⇒ 2-7% gain in efficiency
 - ⇒ COE reduction of 8-15%
- Project has made substantial progress
 - ⇒ 120% of commercial flux achieved
 - ⇒ High pressure cyclable seals & gas tight membranes
 - \Rightarrow 99.5%+ O₂ purity reached at 275 psi ΔP
 - ⇒ Multi-element pilot system operational
- Pilot and pre-commercial demonstrations are essential steps to commercialization